Imaging evaluation of the patient with a CSF leak

GSO 2013

Kristen Lloyd Baugnon, M.D.
Department of Radiology and Imaging Sciences
Division of Neuroradiology
Disclosures

No relevant disclosures.
Acknowledgements

Thanks to Drs. Chen and Wise!

Thanks to the Emory Head and Neck group:

Patricia A. Hudgins, M.D.

Ashley Aiken, M.D.

Amanda Corey, M.D.

Amit Saindane, M.D.
Learning Objectives

- Classification of CSF leaks
 - Traumatic, nontraumatic, spontaneous
- Clinical presentation & diagnosis
- Possible imaging modalities
 - CT, MRI, cisternography (CT&MR)
- Imaging algorithm
Skull base CSF Leak

- CSF from subarachnoid space → nasal or ME cavity
 - Rhinorrhea or otorrhea
 - Implies osseous & dural defect
- Up to 50% of pts develop meningitis
 - Must be worked up & treated
Types of CSF Leak

- Ommaya 1960 – classification (etiology)
 - Traumatic
 - Accidental trauma
 - Surgical trauma (iatrogenic)
 - Nontraumatic
 - Known etiology (tumor, congenital lesion, etc)
 - Spontaneous
 - No known etiology
 - New group recently described
 - IIH
Traumatic CSF Leak

- Most common etiology – up to 90% of cases
 - 80% rhinorrhea, 20% otorrhea
- Extensive skull base fractures
 - (ie. crib plates, ethmoid roof, frontal/sphenoid sinus, t-bone)
Traumatic CSF leaks

- 80% pts present in first 48 hrs
 - 95% present in first 3 months
 - 5% delayed presentation
 - Months to years (even decades!) after trauma
- Most (up to 2/3) heal spontaneously with conservative management (esp otorrhea!)
 - Bedrest, stool softeners, acetazolamide, lumbar drain
 - Persistent leaks need to be fixed!
26 yo F w remote hx of trauma and AMS
Iatrogenic leaks

- Most common:
 - Transphenoidal hypophysectomy
 - Crani with clinoidectomy
 - Endoscopic sinus surgery

- Often site of defect is obvious

- Only HRCT needed for dx & surgical planning

- Postop findings make CT Cg challenging
CSF leak post FESS

- Known risk of ESS
 - Inc risk with revision surgery, polyposis
- Often recognized and fixed intraop
- Sites:
 - Lateral lamella
 - Cribriform plate
 - Ethmoid roof
 - Anterior ethmoid roof
 - Junction of ant and post ethmoids
39 yo F w rhinorrhea post FESS

Lloyd K, et al
Radiology
2008
Non-traumatic CSF leaks

- Pathologic cause identified
 - Tumor involving skull base
 - Before, but usually after chemo/XRT, surgery
 - ORN of the temporal bone occas assoc with CSF leak
 - Increased ICP (i.e. untreated hydrocephalus, congenital or acquired)
- Congenital lesions:
 - meningoencephalocoeles,
 - Arachnoid cysts
 - Gorhams
 - Inner ear anomalies
Spontaneous CSF leak

- No definable cause
- Obese middle aged females (BMI > 30)
- Radiologic signs of long standing ↑ ICP (IIH)
 - Mechanism: ↑ IA pressure, ↑ ICP
 - ↑ ICP – arachnoid granulations erode inner table/sinus wall
 - Assoc w encephaloceles (50-100%) (MRI)
- ↑ incidence with ↑ BMI in US (up to 73%)
- Identifying pts imp – worse prognosis after repair – may alter mgmt
Spontaneous CSF leak/IIH

- Imaging findings:
 - Empty sella
 - Scalloping of the skull base
 - Prominent arachnoid pits
 - Multiple skull base defects
 - Meningoencephaloceles
 - Transverse sinus stenosis
 - Flattening of posterior sclera/prominent ON sheath
Spontaneous CSF leak/IIH

- Imaging findings:
 - Empty sella
 - Scalloping of the skull base
 - Prominent arachnoid pits
 - Multiple skull base defects
 - Meningoencephaloceles
 - Transverse sinus stenosis
 - Flattening of posterior sclera/
Spontaneous CSF leak/IIH

- Imaging findings:
 - Empty sella
 - Scalloping of the skull base
 - Prominent arachnoid pits
 - Multiple skull base defects
 - Meningoencephaloceles
 - Transverse sinus stenosis
 - Flattening of posterior sclera/prominent ON sheath
Spontaneous CSF leak/IIH

- Imaging findings:
 - Empty sella
 - Scalloping of the skull base
 - Prominent arachnoid pits
 - Multiple skull base defects
 - Meningoencephaloceles
 - Transverse sinus stenosis
 - Flattening of posterior sclera/proc.
Spontaneous CSF leak/IIH

- Imaging findings:
 - Empty sella
 - Scalloping of the skull base
 - Prominent arachnoid pits
 - Multiple skull base defects
 - Meningoencephaloceles
 - Transverse sinus stenosis
 - Flattening of posterior sclera/pituitary fossa
Spontaneous CSF leak/IIH

- **Imaging findings:**
 - Empty sella
 - Scalloping of the skull base
 - Prominent arachnoid pits
 - Multiple skull base defects
 - Meningoencephaloceles
 - Transverse sinus stenosis
 - Flattening of posterior sclera/p
Spontaneous CSF leak/IIH

- Imaging findings:
 - Empty sella
 - Scalloping of the skull base
 - Prominent arachnoid pits
 - Multiple skull base defects
 - Meningoencephaloceles
 - Petrous apex cephaloceles
 - Transverse sinus stenosis
 - Flattening of posterior sclera/plexus
Spontaneous CSF leak/IIH

- Imaging findings:
 - Empty sella
 - Scallopoging of the skull
 - Prominent arachnoid pits
 - Multiple skull base defects
 - Meningoencephaloceles
 - Facial nerve meningoceles
 - Transverse sinus stenosis
 - Flattening of posterior sclera/prominent ON sheath
Spontaneous CSF leak/IIH

- Imaging findings:
 - Empty sella
 - Scalloping of the skull base
 - Prominent arachnoid pits
 - Multiple skull base defects
 - Meningoencephaloceles
 - Facial nerve meningoceles
 - Transverse sinus stenosis
 - Flattening of posterior sclera/
Spontaneous CSF leak/IIH

- Imaging findings:
 - Empty sella
 - Scalloping of the skull base
 - Prominent arachnoid pits
 - Multiple skull base defects
 - Meningoencephaloceles
 - Posterior temporal meningoceles
 - Transverse sinus stenosis
 - Flattening of posterior sclera/promin
CSF leak: Clinical Presentation

- **CSF rhinorrhea:**
 - Clear, watery rhinorrhea
 - Worsens with valsalva, head down
- **CSF otorrhea**
 - Serous otitis media
- Meningitis
- Pneumocephalus
- Low pressure HA’s (intracranial hypotension)
- High risk patient: Prior trauma, skull base/ESS, tumor, obese
Clinical Diagnosis

- Beta 2 transferrin (beta trace protein) assay
 - First screening test “gold standard”
 - Protein specific to CSF
 - Unequivocal evidence to support use
 - High sensitivity and specificity
 - Patient collects in test tube
 - Stores room temp or fridge
 - Requires only a few drops (0.5 -1 cc)
 - Limitations:
 - Intermittent or no leak (unable to collect)
 - False positive (rare!) Liver failure
Imaging evaluation

- Goals of imaging:
 - LOCALIZE the leak
 - Characterize size of defect
 - Confirm diagnosis
 - Evaluate for underlying cause
 - Assess for meningocele

- No definite imaging gold standard
 - Difficult diagnosis
 - Lacking randomized controlled trials
 - CT/MRI/cisternography (CT, MR)
HRCT

- Standard of care – first line
- Localize osseous defect (s)
- Do not need active leak to see defect
- MDCT: Thin slices (< 1mm) with reformats
 - Image sinuses and mastoids
 - Manipulate data on workstation, optimize W/L settings
 - Measure defect in multiple planes
 - Sens up to 95%
 - Correlates with size of defect within 2 mm in 75% in one study
- Images used for intraop guidance
Osseous defect with fluid level in sinus or mastoid
HRCT – Imaging findings

- Nondependent soft tissue in nasal cavity or ME cavity, especially if adj to bony defect
 - Concerning for cephalocele
 - Consider MRI
 - Soft tissue in olfactory recess without defect 15/46 pts

Manes, et al Int Forum Allergy Rhinol 2012
HRCT

- If only one defect or potential site, and positive B2 transferrin \rightarrow Surgery

- Limitations:
 - Defect does not necessarily = leak
 - Multiple osseous defects with adjacent sinus opac
48 yo male, BMI 56, rhinorrhea + B2 transferrin
CT - cisternogram

- Pt needs to be actively leaking (or can elicit)
- Technique:
 - Pre-Cisternogram CT:
 - Supine MDCT with thin sections (reformats)
 - Blood, inspissated secretions, osteogenesis
 - LP: 5-7 cc of intrathecal contrast
 - Head down and provocative maneuvers
 - Post-Cisternogram CT:
 - Direct coronal in prone position (elicit leak)
 - Supine MDCT with thin section reformats
CT Cg - Findings

- Bony defect
- ↑ density adjacent to bony defect (measure ROI if no visible change)
- Pooling of high density in adjacent sinuses

CT-Cg Limitations

- Invasive
 - Small but inherent risk of infection/lumbar CSF leak
 - Intrathecal contrast risk
- Radiation
- Time intensive interpretation
- Limited usefulness in slow flow or intermittent leaks
MR - Cg

- Noninvasive and non ionizing
- Suspected cephalocele
- Heavily T2w FS FSE sequences
- Sensitivity (85-89%)
- Best comb w HRCT
MR – Cg with IT Gad

- Promising studies
 - Sensitivity: up to 100% for high flow
 - Selculuk et al: 60-70% sens for intermittent or suspected leaks
 - Delayed imaging up to 24 hours later
- No ionizing radiation
- Ease of interpretation
- Improved contrast resolution
- Assess cephaloceles
MR – Cg with IT Gad - Limitations

- Off label use, not FDA approved in US
 - Many studies from outside US
 - No unexpected adverse effects (HA) with doses and agents used (up to 85 pts in one study)
 - No long term safety or large trials yet
 - Consider carefully, only in pts with nl renal fxn

- Still need HRCT!
MR – Cg with IT Gad

- **Technique:**
 - Complicated pts with mult osseous defects, and/or no/intermittent leaks
 - HRCT first
 - Off-label use consent
 - Pre-gad MR Cg sequences with T1 and T2w images
 - LP – 0.5 ml intrathecal gadopentetate dimegulmine in 4 cc sterile, pres free saline, or CSF
 - Scan at 1 hour, then again at 6-24 hours, as needed
 - Fat sat T1w post in multiple planes
60yo F w intermittent rhinorrhea
60 yo F w intermittent rhinorrhea

Cor T1W FS MR Cg w IT Gad
60 yo F w rhinorrhea

Cor T1W FS MR Cg w IT Gad
60 yo F w rhinorrhea

Axial T1W FS MR Cg w IT Gad
45 yo F w h/o int leak, mult potential osseous defects bilat

Cor T2W MR Cg

Cor T1W FS MR Cg w IT Gad
Conclusions

- Randomized controlled trials are lacking

- Institution Algorithm:
 - Start with beta 2 transferrin analysis, if possible
 - If negative x 2, unlikely CSF leak
Conclusions

• Institutional Algorithm (cont)

 • Initial imaging study: HRCT to include sinuses, central skull base, temporal bones
 • If single defect and + B2 transferrin: surgery
 • If suspected encephalocele: MR after HRCT
Conclusions

• Institutional Algorithm (cont)

• If + B2 transferrin and > 1 potential site on CT:
 Cisternography
 • consider MRcg with IT Gad if intermittent or suspected leak

• If + B2 transferrin and imaging negative, consider EUA, +/- intrathecal flourescein dye
Thank you!
References

• Chi, et al. The Yo-Yo technique to prevent CSF rhinorrhea after anterior clinoidectomy for proximal ICA aneurysms. Operative Neurosurg 2006;59
• Lloyd MN, et al. Post-traumatic CSF rhinorrhoea: modern HRCT is all that is required for the effective demonstration of the site of leakage. Clin Radiol 1994;49:100-103

References, cont

